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Abstract— Intelligent systems are gaining in popularity and
receiving increased media attention, but little is known about
how people actually go about developing them. In this paper, we
attempt to fill this gap through a set of field interviews that
investigate how people develop intelligent systems that
incorporate machine learning algorithms. The developers we
interviewed were experienced at working with machine learning
algorithms and dealing with the large amounts of data needed to
develop intelligent systems. Despite their level of experience, we
learned that they struggle to establish a repeatable process. They
described problems with each step of the processes they perform,
as well as cross-cutting issues that pervade multiple steps of their
processes. The unique difficulties that developers like these face
seem to point to a need for software engineering advances that
address such machine learning systems, and we conclude by
discussing this need and some of its implications.

Keywords— Empirical; applying machine learning; machine
learning

L.

The convergence of machine learning, big data and cloud
computing has been receiving increasing attention. More and
more people are aware of intelligent systems such as Siri,
Google Now, Cortana and Watson. Such systems give the
impression of being able to understand natural language,
reason about abstract concepts, take historical and contextual
factors into account, and learn from experience. These gains
come from combining computing systems’ analytical power
with massive amounts of data. It is no surprise, then, that
enterprises are scrambling to develop big data strategies that
will transform their stores of data into actionable insights, and
enable them to engage customers in ways tailored to each
customer’s needs and situation.

INTRODUCTION

At the same time, popular media is rife with accounts of
seemingly intelligent computers. According to more
imaginative accounts, such systems are well on their way to
being autonomous: able to understand language, reason about
abstract concepts, and learn from experience. While some of
the popular accounts strike us as hyperbolic, the convergence
does indeed offer a promising range of new applications.
However, we are struck by the absence from many accounts of
a key player: people.

People play a variety of roles in developing intelligent
systems, from gathering and curating data to developing and
tuning machine learning models. Therefore, in this paper, we
focus on how people develop intelligent systems in practice.
We believe that by understanding the processes by which
people go about developing intelligent systems, we as a
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research community can better understand how to support their
efforts at developing such systems. What skills do developers
of intelligent systems need? What tools do they use? What
problems and pains do they face? To what extent is there even
a consensus on the answers to these questions? Answers to
these questions can point the way toward supporting more
effective tooling for intelligent systems development.

This study is a first step in addressing these questions. In
this paper, we focus on professionals who use machine
learning (ML) techniques to develop intelligent systems in the
context of a large enterprise. After discussing prior work, we
describe the study’s approach: interviews with 11 informants
from multiple groups involved in the development of different
intelligent systems. Next we qualitatively analyze the data,
describing a general process and its characteristic problems and
pains, and a set of themes that emerged from the interviews.
Finally, we consider the unique difficulties of intelligent
systems development as a software engineering practice,
possible sources of those difficulties, and a few possible
directions forward.

II. BACKGROUND AND RELATED WORK

Difficulties with ML, especially for end users, have been
well established. For example, Amershi et al.’s survey and
other works point to users’ feedback leading to wild
fluctuations in ML systems’ reasoning, users’ need for more
transparent reasoning by ML systems, users’ inability to
accurately serve as oracles to the system, and their lack of trust
in such systems’ reasoning [1, 7, 11, 19, 34, 35]. In response to
such issues, an increasing body of research has begun to
explore what users can do when their ML systems make
mistakes (e.g., [1, 2, 15, 17, 18, 35, 37]). The aim of much of
this work is to enable users to effectively and efficiently
personalize the predictions or recommendations these
intelligent systems make on their behalf.

Still, given such populations of end users, one might argue
that it is not surprising that those outside the computing
profession often have trouble using or trusting such complex
systems. But while the literature has less to say about
professional developers’ attempts to use ML, there has been
some work indicating that they too face difficulties. For
example, in 2008 Patel et al. interviewed researchers who
applied ML to HCI research problems. These researchers
reported numerous obstacles. Patel et al. then watched
computer science graduate students build an ML model to see
how these obstacles manifested [25]. Among the obstacles
were problems with inappropriate training data, inability to
understand whether the results were valid or not, and



protracted periods of exploration without any useful result. In
contrast to Patel et al.’s participants, our participants were
professional ML developers using ML for a broader range of
applications. Our participants also had a broader range of
experience: from creating ML algorithms to making use of
those algorithms in applications.

More recently, Guo reported on “research programming”
[13] —a term he uses to refer to programming when the goal is
to obtain insights from data. All of Guo’s examples are data-
intensive programming, and often involve machine learning to
process that data. His examples include web marketing analysts
writing programs to analyze clickstream data, computational
scientists writing programs to analyze data to make scientific
discoveries, algorithmic traders writing programs to simulate
experimental trading strategies given existing financial data,
and public policy analysts mining U.S. Census and Labor
statistics to predict the outcomes of proposed government
policies [5, 14, 23, 27, 33]. As with Patel et al.’s study, Guo
recounts numerous obstacles faced by these developers relating
to the data, the analysis, and evaluation of output’s correctness
[13].

In essence, this evidence suggests that even experienced
programmers have trouble applying ML. This is disturbing
because for everyday applications and user interfaces to
become more intelligent, software developers will have to be
able to somehow incorporate intelligence.

A variety of tools have been devised to try to address these
issues using the idea of interactive machine learning [8], so
named for its tight feedback loop between a system’s reasoning
and some kind of feedback from a human (e.g., the end user or
developer). Some of these tools treat the ML algorithms as
“black boxes,” with the idea that non-experts should not need
to know the inner workings of ML.

Popular black box approaches are instance labeling, in

Participant Position Machine Learning Experience
P1 Researcher 4.5 years
P2 Intern 3 years
P3 Software 2 years

Architect
P4 Researcher 5 years
P5 Engineer 20 years
P6 Software 10 years
developer
P7 Researcher 15 years
P8 Researcher 3 years
P9 Researcher 6 years
P10 Project 10 years
Lead
P11 Researcher 25 years

Table 1: Participants had a range of experience and positions.

163

which a user trains instance-based classifiers [3, 10], active
learning [4, 30], and interactive changes of reinforcements in
reinforcement learning [16]. The black box notion at first
seems attractive from both a usability and an economic
perspective, because its success would suggest that ordinary
developers, without extensive ML backgrounds, could select,
connect with simple API calls, evaluate, and parameterize ML
algorithms and thus incorporate ML into their systems.

However, it has been argued that, given the complexity of
ML algorithms, ML algorithms as black boxes cannot work.
The argument rests on non-specialists’ mental models: humans
develop mental algorithms that they believe reflect the
system’s reasoning, but these models can be very flawed in the
absence of transparency, and are not easily altered once
established [36]. With flawed mental models, users tend to lead
ML systems astray, providing feedback that causes an
algorithm to perform worse instead of better [19, 20, 35].

To solve this problem, some researchers advocate for white
box (or at least whiter box) approaches that unveil an ML
system’s reasoning. Some examples are explaining ML with a
variety of intelligibility types [17, 22], feature labeling [6, 28],
and constraining or critiquing the ML system’s search space
[12, 15, 24, 37]. However, white box approaches are also far
from a panacea: they face many unsolved challenges, such as
the difficulty in telling the whole truth to non-expert users
without overwhelming them with the complexity of many of
today’s ML algorithms [17].

Still, non-experts are a worst-case situation. One way of
understanding whether white box approaches have even the
potential to succeed is to consider a best-case situation—the
whitest of white boxes, namely a white box viewed by
experienced developers of intelligent systems. If we can
establish what experienced ML developers bring to the
development of systems incorporating ML and how (and if)
they succeed, we can better understand what kinds of support
or automated intelligence must be brought to inexperienced or
novice ML developers or users. However, until now, there has
not been a comprehensive look at how experienced ML
developers go about performing machine learning tasks. That is
the gap this paper aims to fill.

III. METHODOLOGY

A. Participants and Procedures

The study site was a large global enterprise that is well
known for its work in intelligent systems. Participants were
recruited by an email that solicited experienced ML developers
for participation in an interview (which we’ll refer to as
Interview #1). Ultimately, we interviewed 12 participants. One
was excluded from the study because s/he had only four
months experience with ML. Our remaining 11 participants
were experienced ML developers from different parts of the
enterprise who represented a variety of different projects.

All participants’ primary role in their profession was
machine learning, but they had a wide range of experience and
skill sets. Participants had one of two types of experience with
ML: they either worked on developing ML algorithms or used
ML algorithms in the development of intelligent systems. The
11 participants (10 male, 1 female) had a minimum of two



years of ML experience. The median number of years of
experience was 6, the mean was 9.4, and the maximum was 25
years. Table 1 shows the job title and experience level of each.

Interview #1 was a semi-structured interview, in which the
interviewer arrives with a required list of questions, and then
drills down dynamically with further questions that follow up
on the participant’s specific response. We interviewed the
participants in person when possible; otherwise we did so via
conference calls. Interviews ranged from twenty to forty
minutes. All interviews were audio recorded with permission
from participants.

We started Interview #1 with demographic questions.
These included the participant’s position, years worked at the
company, and years of experience with machine learning. We
then began the body of the interview with the following “main”
prompt:

Please describe the last time you worked on any component of
an application or Machine Learning model where you had
to diagnose or solve problems with the model.

For the remainder of the interview we asked participants to
reflect on the project they had just described, using the
following topics to guide discussion:

Data collection: How did you gather data? If you didn’t collect
the data yourself, where did it come from? How did you
decide which data was relevant for your task?

Feature selection: How did you go about the process of feature
selection?

Ground truth: Did you establish ground truth yourself? Did
you ever have to change ground truth? How did you keep
track of changes to ground truth?

Process: What was your role in the project? What steps did you
follow over time?

Algorithm selection, implementation, improvement. How did
you choose the algorithm you used? How did you integrate
it into your work process? How did you go about improving
the performance of the resulting model?

Version control: When and for what purposes did you use
version control?

For each topic we also asked participants whether or not
they’d encountered any problems along the way.

B. Analysis

After transcribing the Interview #1 responses, one coder
analyzed them by listening to and reading the interviews
repeatedly to find recurring themes and patterns across
interviews. Participants then validated the analysis of Interview
#1 via verification interviews, which we’ll refer to as Interview
#2.

In these verification interviews (Interview #2), we asked
participants questions about the themes and patterns we had
derived, namely whether they (1) had personally experienced
them (to validate our analysis) and (2) had observed them in
the field (which, added to question 1, measured the extent of
each phenomenon). Seven of the 11 original participants
participated in Interview #2. (We were unable to reach the
other four original participants for participation in Interview
#2.)
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Participant validation levels ranged from 67% to 91%.
Overall, participants agreed with our analysis of their Interview
#1 content 82% of the time (i.e., question (1))—a validation
level that exceeds Stemler’s [32] guidelines for consensus
measures being at least 70%.

In the following sections, we aggregate the results of
Interview #2 questions together, to measure the extent to which
these participants actually experienced or witnessed the
phenomenon in the field. In essence, aggregated Interview #2
responses will represent how widespread a phenomenon was.

IV. RESULTS: THE PROCESS

Figure 1 shows participants’ high-level description of the
process they follow, but in its ideal, trouble-free form. Thus,
we present our results in the sequence of Figure 1. Note,
however, that these steps were not always performed in this
exact order, and not all participants performed all steps. Also
note that our interviews did not cover the first step shown in
Figure 1, labeled “Define Problem”. This step in itself is a
potentially interesting one, but our study’s scope begins after
the problem has already been defined.

Table 2 shows the results of recurring themes and patterns
we derived from the Interview #1 data for each step in Figure 1
(starting with Collecting Data), and how widespread each
phenomenon was as per Interview #2. We detail each in the
next subsections.

A. Collecting the Data

Data for an application based on statistical machine
learning must come from somewhere. For example, one

‘ Define Problem ‘

e
| CollectData |

B 2

‘ Generate ‘
Ground Truth

‘ Select Algorithm

I

‘ Select Features
-

Generate Model

Results
Satisfactory?

Project
Complete

Figure 1: A simplified, “ideal” version of the machine learning
process described by our participants.



participant needed text snippets from business descriptions to
classify, and another participant needed radio protocols to
predict the source of radio waves.

When we asked participants how they collected their data,
we learned that most of our participants had managed to avoid
collecting their own data. Instead, many of our participants
received data from third party vendors or from machine
learning competitions where the data was provided in a pre-
packaged format; in Interview #2, 6 of the 7 respondents
reported having seen or done this (Table 2).

A key reason for this high rate of avoiding collecting data
was that data collection is very difficult. As P3 cautioned, “It’s
a very involved process.” One problem was that (P4): “..
there’s some data that is not easily obtainable.” Another
problem was that, even given access, the data required special
tools to process. As P4 explained:

P4:
still, years after this product is being sold ...

“

. custom tools that we don’t have access to ... we
<have>

# Participants who
saw or
experienced it
(Interview #2)

Phenomenon
(from Interview #1)

Collecting the Data

Obtaining data in some way other than
collecting yourself

6/7 (85%)

Establishing Ground Truth

Difficulty establishing ground truth, due to
errors and faulty data

7/7 (100%)

Selecting the Algorithm

“Obvious” choice as to which ML algorithm(s) 4/6 (67%)
to use
Using “common sense” to select algorithms 4/6 (67%)

Starting out with simple ML algorithms and
then moving to complex algorithms.

6/6 (100%)

Relying on your past experience to select ML
algorithms

5/6 (83%)

Selecting the Features

Importance of understanding the algorithm and
its limitations in being able to select features

6/6 (100%)

Evaluating the Model
Testing taking extensive time and effort 7/7 (100%)
Errors caused by lack of experience or 3/7 (42%)
knowledge
Needing to consult with an expert to debug the 3/7 (42%)

results

Table 2: Process results overview. 11 participants answered
Interview #1, and 7 of them later answered at least some
questions in Interview #2; the denominator shows how many
answered each Interview #2 question.
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Sfundamental data that’s hard to get at.”

P3’s team, who collected data from an internet source
manually, even had to build a system just to keep track of their
data:

P3: “... so we built a ... <special-purpose> system ... a very
complex system to manage this process.”

Even when participants were provided with data, there
were difficulties. For example, Figure 2 shows how P8’s
process deviated from Figure 1’s ideal path. Issues with the
provided data set P8’s project back by an entire month:

P8: “ the data was stored in a [type of] system, and we
wanted to use [another system]... all these migrations
<were> ... painful. It took us ... more than one month.”

P11 had also been given data, but still had to analyze its
usefulness to their needs:

P11: “This may be a very rich, good source of data or it
may be junky.... hard to sift through... There may be so little
uniformity in what we find ... that non-uniformity will
render the data basically useless.”

At the time of the interview, P11 was still trying to decide
whether and how to supplement the provided data.

B. Establishing Ground Truth

For some particular set of test data, what are the right
answers? For example, a machine learning system might need
to classify statements such as “Babe Ruth hit one out of the
park” with the appropriate category label, choosing among
possibilities like Baseball, Candy, or Misdemeanors. Ground
truth is the “correct” answer. Data sources provided by
machine learning competitions included ground truth (ie.,
answers were provided to them), but in other situations, the
participants had to establish it (i.e., they generated the answers
themselves). All 7 Interview #2 respondents had seen or
experienced difficulties establishing ground truth (Table 2).

Ideally, ground truth should be a perfect answer key against
which to test a model. Unfortunately, this often wasn’t the
case. For example:

P2: “even the canonical benchmark sets ... have label noise
or garbage data ...”

[

Obtain Data From
Third Party
¥

s datain
correct
format?

No Yes

[GetAssistance] ( Continue J
(Format Data
(__ Properl

Figure 2: P8’s data collection process. P8: “a really painful
stage in which we couldn’t move forward” until someone
helped them format their data.

Actual: 1 month
Aejap ON :leap|



P11: “In the end, I think ground truth is: Are we reflecting
what the human expert would have done. ...anything we do
is probably based on an imperfect ground truth.”

P9: “some cases ... <were> more qualitative - so it was
like I subjectively estimated if it’s good or bad”

Not only was ground truth often imperfect, it was costly to
establish. For example, Figure 3 shows how P2’s process
deviated from Figure 1’s ideal path. P5 emphasized the extent
of such deviations from the ideal path:

P5: “So ground truth is a huge problem, very labor
intensive, ... we re doing a lot of this very manually.”

This labor intensiveness was especially reflected by P3’s
team—about 40 members of that team were working to
establish ground truth.

C. Selecting the Algorithm

Different ML algorithms can function differently on the
same data, and scholarly papers abound on which ML
algorithm to use for different situations and ways to choose
among them (e.g., [6, 30]). However, most participants
described relatively ad hoc ways of making their selections.

For example, some participants simply selected algorithms
that they liked:

P8:
algorithm you like ...

“it’s not that important ...

”»

you fit using whatever

Others experimented with a set of algorithms they had used
in prior projects. For example, when P7’s team did not know
which algorithm to use:

P7: “Past experience in other projects led us to the choice
.. we tried several ... and saw which ones went better.”

A key element of the participants’ algorithm selection
process was to keep the algorithm as simple as possible. All 6
Interview #2 responses reflected this (Table 2). As P10 put it:

P10: “I always start with the simplest algorithm, linear
classifier, as a baseline, and then try more
complicated algorithms.”

P11 agreed: “My rule of thumb is ...
simplest ...”

always to start with the

‘, Obtain Ground Truth Data |
From Third Party )

Is Data True
round truth?

No Yes

-

Succeed

( Try To Establish
| True Ground Truth

No Fall

Contmue
Accept Imperfect
\_ Ground Truth? J

Figure 3: P2’s ground truth process, which P2 summed up
as: “True ground truth eludes us.”
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D. Selecting the ML Features

Wikipedia offers an informal definition of an ML feature as
“an individual, measurable property of a phenomenon being
observed” [38]. But choosing which features to use can be
challenging. All 6 Interview #2 respondents reported the
importance of understanding the algorithm when selecting
features (Table 2). Further, although choosing informative,
discriminating and independent features is key for algorithms’
effectiveness, as P5 aptly pointed out, it is not yet scientifically
well understood:

P5: “...it’s an ongoing science. <ML researchers> are still
trying to figure out what features are useful for different
types of problems.”

Sometimes participants were able to circumvent the
challenge by simply using automatic feature selection:

P6: “I just used the feature selector that ...
box.”

But when P6 could not do this, a set of experiments would
ensue: “We <used> a very simple feature selection process
where we just looked at the statistical ... and only those
that have some relatively low threshold would be kept.”

came out of the

However, most participants relied mostly on domain
knowledge, past experience, and opinions. For example

P10: “usually ... using common sense and prior knowledge
about the domain ... and features that we believe are
indicative of the labels we re looking for.”

P11 (summing up): “Well, there’s always some art to it.”

E. Evaluating the Model

An algorithm works with features and training data, and
ultimately produces a model. The model, in turn, is what is run
to produce the answers. At this point, participants described
how they evaluated whether these models’ answers were
correct.

All 7 Interview #2 respondents (Table 2) reported
evaluating the model to be a long, arduous process, in which
participants iteratively refined the model through changes to
parameters, training data, and so on. They did these iterations
using an evaluate-fix-evaluate cycle that often required many
changes, sometimes even sending the participants back to
earlier steps in the process:

P7: “a lot of repeating trials: add new features run it
again, try replacing some features, run it again, try some
different parameters run it again...”

P8: “<We> try various models on the cross validation set
and then pick the one that gives you the best
performance...”

But it was often difficult to understand the results of the
model, and about half of the Interview #2 responses (Table 2)
pointed to a need for significant ML expertise. P2 described the
experience shown in Figure 4, and summarized it this way:

P2: “Normally ... we run something <to> see if it works at
all. Most of the time, it doesn’t...”

P2 (continuing): “..If we figure out why, then ...
tackle that problem. If we don’t then ...
board.”

try to
back to the drawing



P6 didn’t feel it was even worth his time to try to improve
their model, because his colleagues didn’t understand the
nuances well enough:

P6: “I started with beating the baseline, and then just said
‘good enough.’”

P6 went on to explain why: “It was so difficult to explain to
people what evaluating a model means ... It would probably
be a small effect, and no one would understand what it
meant... ”

V. RESULTS: THE CROSS-CUTTING ISSUES

Table 3 shows a set of cross-cutting issues we derived from
the Interview #1 data for each step in Figure 1 (starting with
Collecting Data). We detail these issues in the next
subsections.

A. Cross-Cutting Issues with Environments and Tools
1) Tools for doing the work

Participants often had to rely on in-house solutions
purpose-built for their situation; 5 out of the 7 Interview #2
respondents reported this issue (Table 3). These solutions
ranged from scripts written by one person and passed along
through the years to websites purpose-built by teams to help
them manage data. Common reasons were that there was no
other way to access the data they needed, or there was no
previous way to do what they needed to do:

P7: “At some point we developed a web interface ... to
display data ...”
P7 continues, lamenting: “...

the right skill.”

<but> we didn’t really have

Rather than build anew, P6 tried to rely on older (custom)
scripts to interact with the machine learning software he
needed. Unfortunately, he did not understand these scripts, so
he had to meet often with the original scripts’ authors. This
was a situation he’d found himself in often in his 10 years of
ML development experience:

P6 (about reusing custom tools): “Ideally you push a button
. in practice it would always fall down ... it wasn’t
documented, you just had to be sitting there ... face to face

Generate Model \

Results
Satisfactory?

No Yes
Try to identify .
problem Continue
Fail
} [ “Tackle

problem”
Figure 4: There were significant issues with P2’s machine
learning model: “Most of the time, it doesn’t work at all.”

Ajoiey

“Back To The
Drawing Board”

Most of the time
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with people who wrote it.”
2) Tracking versions and experiments

As experienced developers like our participants know,
keeping track of the evolution of their software is important.
Indeed, all 7 of them (Table 3) used standard version control
systems to track the source code in their projects.
Unfortunately however, they found themselves without options
when it came to tools for tracking their models.

P3: “From the software perspective, there is version
control, but from the side of ML, there is no tool for that.”

To solve these problems, some participants used text files
to keep track of old commands they had run on their model,
along with results. One participant used a database to record
old commands and results. Overall, participants tended to track
workflow via informal methods, such as emails among
colleagues or notes to themselves.

Especially problematic was the lack of tools to keep track
of tests and experiments on their models, as indicated by 6 out
of the 7 Interview #2 respondents. This led to wasted time, and
tests and conditions had to be repeated unnecessarily. Another
problem was an inability to reproduce the exact conditions
under which a machine learning model was created. As P2
explained:

P2: “If you're not careful ... you have something that’s not
reproducible. You have this magic binary ... then you try to
recreate it and it doesn’t work ...”

P2 continues: “Congratulations, you have something that
can’t be ... duplicated. That’s bad. Very bad.”

# Participants who saw
or experienced it
(Interview #2)

Cross-cutting Issues
(from Interview #1)

Issues with Environments and Tools

Tools: Had to rely on and/or build in-house 5/7 (71%)
tools
Version control tools: can/did use for code 7/7 (100%)
(algorithm, application, ...), but not available
for models and model experiments
Tracking experiments: only through emails, 6/7 (85%)
notes, or other informal methods

Procedural Issues
Trial and error: Had to resort to basic trial and 7/7 (100%)

error

Assistance: Needed to turn to subject matter
experts for assistance.

6/7 (85%)

Magic: Mysterious results/outputs of models 4/5 (80%)

Table 3: Crosscutting issue results overview.



When asked how he kept track of his data to help solve this
problem, P2 responded:

P2: “Currently, I am just very, very, very careful.”

B. Cross-Cutting Procedural Issues

Participants were largely dissatisfied with the ad hoc
collection of procedures they found themselves using—an
abundance of trial and error, judgment calls requiring extensive
prior experience, and reliance on “magic.”

1) Trial & error, judgment calls, and assistance

Every step of the process had participants referring to some
measure of uncertainty: from feature selection being an
“ongoing science” and an “art” to having to test a machine
learning model over and over again due to being unable to
diagnose problems with the model. Evaluation and testing were
particularly described as a “long, labor-intensive process” (all 7
Interview #2 respondents). The only -consistent testing
methodology among the participants was to run the model over
and over again.

Judgment calls based on prior ML experience also
abounded. Participants relied on rules of thumb (e.g., “start
with the simplest algorithm™) (all 6 Interview #2 respondents in
Table 2), past experience (5 of 6 Interview #2 respondents in
Table 2), and having to turn to subject matter experts for
assistance (5 of 7 Interview #2 respondents in Table 3). The
common theme was a heavy reliance on prior ML knowledge
in order to be successful:

P10: “... usually engineered using common sense and prior
knowledge.”

Unfortunately, this need to draw heavily upon prior ML
experience suggests a rather large chasm for ordinary software
developers to cross before they can reasonably incorporate ML
into their applications.

2) Magic, black art and voodoo

Finally, several of these experienced ML developers
referred to machine learning as something akin to magic:

P4: “... inside this black box ... all the magic of machine
learning that happened on the inside is off-limits to us.”

P5: “Too many of our cases, the machine learning people
are ... in the background doing this like a black art.”

P2’s description of problem-solving: “a process of going
from obvious tricks to one level away from, like, voodoo.”

Participants went on to describe a special inner circle of
“high priests” whose help was necessary in order to obtain the
right incantations. For example:

P5: “A lot ... is done manually by the high priests of
machine learning.”

P5: “Too much of this is in the hand of machine learning
guys ... what we need to be able to figure out is a way to ...
train a ML model without one of those guys in the loop ...

Even P4, who was something of an ML expert himself in
that he interpreted the results of machine learning algorithms
for others, referred to himself and his team as being “mere
mortals” whose expertise was not enough:
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P4, on the way the process would ideally be: “Look at the
questions to see: do they appear to us as mere mortals, do
they look like they do have the same intent?”

P5: “[instead it should be possible to succeed by] ask mere
mortals a set of questions.”

VI. DISCUSSION AND CONCLUDING REMARKS

Our participants identified a set of steps that together make
up the process of developing an intelligent systems
application—and had difficulties with all of these steps.

A. The Need for a Software Engineering for
Machine Learning

The issues our participants described suggest an important
need for explicit attention to software lifecycle phases—they
show that developing intelligent applications is not simply a
matter of creating an application and occasionally calling ML
library routines. For intelligent applications, “regular” software
engineering activities and skills apply, of course, but our
participants revealed that the skills needed for nurturing an
intelligent application through its birth and lifecycle go far
beyond this set.

As just one example, consider the testing and debugging
activities of software development. In traditional software
development, the thing that needs testing and debugging is the
application. But in intelligent system development, our
participants described onerous processes of testing and
debugging on up to four different artifacts—the ML algorithm,
the training data and its relationship to the “real” data, and the
parameters to send to the algorithm, in addition to the actual
application. Compounding these problems, these experienced
ML developers described many cases in which developing
ML-based systems required skills held only by certain “high
priests”. Given such complexity, perhaps it is not so surprising
that these experienced developers described debugging such
systems as something akin to magic and even voodoo.

It is interesting to consider why developing ML
applications appears to be so different from developing other
kinds of applications. Sculley et al. reflected upon their own
experiences in a position paper recounting their views of the
difficulties of developing ML applications [29]. One point
they raise is the “change anything, changes everything” nature
of ML models [29]. As they explain, the dependencies among
all the parts of the ML application (application code, “glue
code”, ML libraries, and external data) prevent use of standard
techniques for reducing coupling such as abstraction and
information hiding. Not being able to isolate the impact of a
specific change anywhere in the system of dependencies could
be a reason that our practitioners so often resorted to ad hoc
practices like trial and error and rules of thumb.

Some participants’ reports of having to fall back on
assistance from “high priests” of machine learning are
reminiscent of craft trades, with apprentices learning from
master craftsmen/women. To go beyond this craftsmanship
state, systematic methods usable by “ordinary” practitioners
(like our participants) are needed. Perhaps deriving these
systematic methods from ML experts’ practices would provide
a starting place for an ML-specialized software engineering to



meet this need.

B. Tools Today and Tomorrow

The participants also suggested a basic mismatch between
the tools available vs. their practical needs. For example, they
reported a lack of usable tools for their specialized data
transformation needs and data-set integration. The tools they
described using targeted only one step in their development
processes, but did not easily interoperate with other tools they
needed to use.

Our participants also said they needed tools and methods
that helped them track the data they have chosen to use, the
choices they have made as to algorithm and features, and the
experiments they had already run. These were important so that
they could rerun experiments with the same data and model
settings. When such tools were not available, they needed them
so badly, they created their own.

One kind of tool they did not seem to have that has helped
in other software engineering situations is a “foraging” tool.
Information foraging theory (IFT) has been helpful not only in
explaining some of the problems developers have when
developing and debugging code, but also in supporting them
in these activities [9, 21, 26, 31]. Studies have shown that
developers follow “scent” in a code base to track down the
places in their programs that are causing bugs. One possible
interpretation of our results is that the ML tools used by these
developers did not help developers follow scent when trying
to understand a model and its associated interdependencies.

IFT hasn’t yet been applied to debugging ML models.
Future work is needed to see if this theoretical approach,
which has been found useful for thinking about how to support
debugging in traditional programming, has explanatory power
for how ML developers program. If so, we will need to
establish what types of information scent ML developers need
to follow in order to improve performance, and fix errors in
their ML models.

C. A Matter of Ever-Rising Technical Debt

ML practitioners are struggling. Their reports of the
inaccessibility of the necessary skills and tools for “mere
mortals” (P4 and P5’s terminology) echoes Sculley et al.’s
position paper on ML’s rising technical debt [29]. As they
argued, “technical debt does tend to compound,” such as in
“ratcheting up maintenance costs”—which predicted exactly
the kinds of maintenance experiences our participants
described. As participant P6 summarized his experiences with
such maintenance costs:

“The whole thing is very complicated and rickety.”
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