2025 ILSG Kilauea &c Field Trip Prep Notes

Kilauea: Dynamics of eruptions; Magma types

  • Kilauea erupted on 4 May 2018, from Haumaumau crater on its summit.
  • The rift eruption was driven by collapse of the central (shallow) magma chambers 
  • The 2018 rift eruption had at least three different magmas: 
    • a highly evolved cool (1110°) viscous lava presumably from sources in the rift system [May 3-9]
    • a less evolved hot (1130°) more fluid lava [May 17-18…]
    • a very hot (1145°) magma lacking the cargo of low temperature crystals of the previous lavas, but with olvine with high levels of MgO indicating magma > 1250° somewhere in the feeder system

“The first two were the chemically evolved basalt of the initial fissures and the highly viscous andesite. Both are volumetrically minor sources that represent distinct pockets of old residual magma from Kīlauea’s east rift zone that evolved for more than 55 years, cooling and crystallizing at depth. The third and volumetrically more substantial source was less-evolved and hotter basalt of fissure 8. This source was similar in composition to the magma erupted at Kīlauea in the years before 2018 and was ultimately derived from the summit region. Draining and collapse of the summit by this voluminous eruption may have stirred up deeper, hotter parts of the summit magma system and sent mixed magma down the rift..”

Things I’ve learned re eruption dynamics and magmas

  • Not all lava from Hawaiian volcanoes is basaltic
  • Even that that is basaltic, changes in composition; each eruption features at least one, and often several, unique lava compositions. 
  • Magma chambers are not homogeneous; this is presumably even more true of rift systems, where greater cooling can generate mushes of crystals 
  • The 2018 Kilauea rift eruptions were driven by collapse of summit magma chambers. 
  • The 2018 Kilauea rift eruption exhibited periodicity of 2-3 days (surges that began within minutes of caldera collapses 40 K upslope) and 5-10 minutes (pulses driven by local outgassing changes )
  • The dynamics of an eruption can be mapped into several stages
  • Lateral injection of magma into a rift zone (which forms, in Hawaii, due to volcano flanks sliding into ocean) leads to initial eruption
  • Pressure in the rift system leads to its elaboration – advancing dikes may capture pockets of highly evolved magma with mushes of low temperature crystals.
  • Magma injection into rifts, if large enough, can trigger slip on caldera ring faults 
  • Ring fault slippage can add pressure to rift system and drive eruptive behavior at the rift
  • The central magma chamber appears to be vertically zoned. Initial eruptions of the rift zone (after flushing out pockets of magma that have evolved in the rifts) are composed of younger magmas from lower in the chamber; summit eruptions are fed by older, more evolved magma, higher up in the chamber. 
  • The 2018 Kilauea eruption produced lava at volumes of 100 meters3/sec
  • Stages of Hawaiian volcanoes: pre-shield (alkalic basalt & basanite); shield (thoelitic basalt derived from both shallow plumbing system and deep plumbing system adjacent to mantle); post-shield (alkalic basalt from deep plumbing system adjacent to mantle (shallow plumbing has crystalized)); post erosional/rejuvenated (alkalic basalt, basanite & nephelinite from ???)

Order and nature of basaltic mineral & crystals

Common minerals that crystallize from basaltic magma, ordered by the temperatures at which they typically form:

  1. *Olivine (Ca2(Mg,Fe)4O4): This is one of the first minerals to crystallize at the highest temperatures, typically around 1,200°C to 1,300°C. Olivine is rich in magnesium and iron and is often found in the earliest stages of crystallization in basaltic magmas. 
         *Olivine crystals are olive-green to yellow-green color. It often has a glassy or vitreous luster, and the crystals can be angular or rounded, with a granular texture when present in volcanic rocks. When olivine crystals are large enough, they often appear as transparent or translucent, sometimes with visible crystal faces, which are usually in a near-rectangular shape. 
         When olivine is exposed to oxidation, especially under conditions of high temperatures or in the presence of oxygen, it can alter to a yellowish or brownish hue, sometimes developing a reddish or rusty tint due to the formation of iron oxide minerals.
  2. *Pyroxene (e.g., augite, diopside): Pyroxenes crystallize at slightly lower temperatures, generally around 1,100°C to 1,200°C. These minerals are composed of chains of tetrahedra and are rich in iron and magnesium. 
         *Augite crystals are dark green to black, often with a shiny, almost metallic luster. It crystallizes in short prismatic crystals, which are often rectangular or blocky in shape. Augite crystals are typically larger than many other basaltic minerals and can be quite visible in coarse-grained basalts.
         Augite, being rich in iron, may undergo partial oxidation upon exposure to the atmosphere. The oxidation often causes a darkening of the color to a more brownish or reddish tint, though it rarely forms the rusty, reddish color seen in olivine. Augite may also exhibit a duller or more matte luster when oxidized.
         *Diopside is another pyroxene mineral, typically appearing as light green to pale green, although it can also be colorless or pale yellow. It forms prismatic crystals that are often transparent or translucent. Diopside crystals have a glassy or vitreous luster and typically display distinct striations or fine parallel lines on their crystal faces.
  3. *Plagioclase feldspar (labradorite, anorthite): Plagioclase forms between 1,000°C and 1,100°C in basaltic magmas. This mineral can range from calcium-rich (anorthite) to sodium-rich (albite) compositions, with the more calcium-rich varieties crystallizing at higher temperatures.
         * Plagioclase crystals vary from white to gray, and often have a glassy luster.  They are typically tabular or blocky in shape and can show distinctive twin planes (known as albite twinning). 
  4. Magnetite (Fe3O4): Magnetite crystallizes at around 1,000°C to 1,100°C and often forms alongside other iron-rich minerals. It is a common accessory mineral in basaltic magmas.
         * Crystals not typically visible in lavas 
  5. Ilmenite (FeTiO3): Ilmenite forms at slightly lower temperatures, typically around 900°C to 1,000°C. It is a titanium-iron oxide mineral and often occurs in basaltic lavas.
         * Crystals not typically visible in lavas
  6. Spinel (MgAl2O4): Spinel crystallizes at lower temperatures, usually around 900°C. It is a common accessory mineral in basaltic rocks, often forming in the lower temperature range of basaltic crystallization.
         * Crystals not typically visible in lavas

These minerals crystallize according to Bowen’s reaction series, where early-formed minerals (like olivine and pyroxene) are typically more magnesium- and iron-rich, while later-formed minerals (like plagioclase and spinel) are more silica-rich due to depletion of Mg and Fe.

Other Notes

TBD

.

Views: 2

Snow Crystals, Kenneth Libbrecht

Snow Crystals: A Case Study of Spontaneous Structure Formation, Kenneth Libbrecht, 2022

This is Libbrecht’s magnum opus, at least on snow; this goes deep into the science. …and I love that he has ordered the references by date, so you can see the history of the science leading up to Libbrecht’s work.

C1: Snow Crystal Science

xxx

  • The most basic shape of a snow crystal is a hexagonal prism — think a hex nut but without a hole in the middle. Made up of molecules, this prism shape tends to be ‘rougher’ at the angles of the hexagon, and the roughness offers more and more favorable opportunities for H2O molecules to attach (this is in contrast to ‘flat’ or planar surfaces which do not offer such opportunities). Libbrecht refers to this as a growth instability, and it means that the prism tends to grow a projection from each angle leading to a six-pointed star and, as growth continues, a conventional snowflake shape.
How snow crystals grow

The particular form of a snowflake is finely dependent on the humidity (degree of supersaturation) and temperature. The Nakaya diagram shows the general morphologies of snowflakes that form at particular temperatures/supersaturations. Snowflake shapes are diverse, and for practical purposes, unique, because the falling flake moves through regions of the cloud that differ in humidity and temperature. Nakaya liked to remark that snowflakes are “hieroglyphs from the sky,” because their forms describe the changing conditions through which they fell as they formed.

Generic diagram of how a snow crystal forms, and the Nakaya diagram that shows the morphology of snow crystals as a function of supersaturation and humidity.
Nakaya diagram of snow flake morphology
  • Mullins and Sekerka realized that growth instabilities are often associated with pattern forming systems, with solidification being a specific example (See 1964Mull). In particular, a dendritic branching process, now called the Mullins-Serka instability, occurs whenever diffusion limits the solidification of materials.
  • Studies of dendrite formation often involve succinonitril, because it is transparent and has a freezing point near room temperature. (See Glicksman 1976Gli.)
  • Eventually work on the Mullins-Serka instability grew into an area called solvability theory, which explains many of the defining characteristics of dendritic crystal growth.

A short tour of the book

  • C2: Ice Crystal Structure. Examines the properties of ice in equilibria, with special attention to “terrace step energies” in the basal and prism facets of ice crystals. Another factor called “surface premelting” is also discussed.
  • C3: Diffusion-Limited Growth. The formation of elaborately branched snow crystals results from the Mullins-Sekerka instability, which arises from the slow diffusion of water vapor molecules through air. Thus particle diffusion and surface attachment kinetics are the primary physical processes guiding snow crystal growth. This line of work also shows that heat diffusion and surface energies play relatively minor roles.
  • C4: Attachment Kinetics. This chapter describes the Suface Dependent Attachment Kinetics (SDAK), which along with Terrace Nucleation Theory and Terrace Step Energies can explain most of the morphological transitions seen in the Nakaya diagram.
  • C5: Computational Snow Crystals. This chapter discusses work on computational models of snow crystals — this is work in progress.
  • C6: Laboratory Snow Crystals. Examines various approaches to creating snow crystals in the lab.

I am going to pass on describing the other chapters… I believe that chapter 1-4 will cover most of what I’m interested in.

C2: Ice Crystal Structure

C3: Diffusion-Limited Growth

xxx

C4: Attachment Kinetics

xxx

C5: Computational Snow Crystals

xxx

C6: Laboratory Snow Crystals

xxx

C7: Simple Ice Prisms

xxx

C8: Electric Ice Needles

xxx

C9: Designer Snow Crystals

xxx

C10: Natural Snowflakes

xxx

C11: Snowflake Photography

xxx

Views: 1

Four Billion Years and Counting…

Four Billion Years and Counting: Canada’s Geological Heritage. Produced by the Canadian Federation of Earth Sciences, by seven editors and dozens of authors. 2014.

November-December, 2024.

I am reading this with CJS. It is a nice overview of regional geology, and it is nice that all the examples come from Canada, and at least some of the discussion is relevant to Minnesota Geology. The book is notable for its beautifully done pictures and diagrams.

The first part of the book, Foundations, is an introduction to general geological concepts. For CJS and I this will be largely review. Here I will preterit any summary, and simply list some of the points that stood out because they filled in a gap, or provided a different perspective.

FOUNDATIONS

Mostly background on geology for the general reader; but was good as a refresher, and also bringing in North American examples of various phenomena.

C1: On the Rocks

  • Polygonal jointing occurs when basalt flows stop moving before they cool.
  • Granitic magma forms at 600-900°, sometimes with water contributing to lowering the melting point, where silica minerals tend to melt, but more magic minerals remain solid. The melt tends to move upward, either because it is less dense than surrounding rock or because of tectonic pressures. As it forms a mass, chunks of surrounding “country rock” fall into it in a process called “stoping,” making the melt more silicacious and also persisting in solid chunks that will eventually become xenoliths.
  • Ripples (and their large scale cousins, dunes) are straight and symmetric if they are formed by currents moving back and forth, or curved if they are created by a unidirectional flow.
  • Mud cracks form as a result of repeated drying and wetting, as occurs in mudflats with seasonal rain, or intertidal areas.
  • A seam of coal that is a meter thick was originally 5-10 meters thick and took on the order of 2500 years to accumulate.
  • Paleosols, fossil soil surfaces/horizons, are generally rock-like with a characteristic disrupted knobby appearance.
  • Metamorphic rocks develop cleavage planes perpendicular to the direction force or pressure is being applied; metaphorphic rocks split along cleavage planes, not their original bedding surfaces.
  • Schist has a lot of mica; gneiss has little. Both are coarsely crystalline and so highly-altered that it is difficult to tell what the source rock was. The light and dark banding in gneiss is the result of recrystallization, and has nothing to do with the original bedding plane.

At lower metamorphic grades, platy crystals of chlorite and mica are common. As higher metamorphic grades are reached, minerals such as garnet, staurolite, and sillimanite may form. Such high-grade metamorphic rocks form at depths of 15 to 25 kilometres within the crust. If pressure (usually the result of deep burial) is a major factor during metamorphism, minerals such as kyanite and glaucophane may grow. The blue colour of glaucophane gives rise to the name blueschist, a rock formed under conditions of low temperature and high pressure.

Igneous rocks also show interesting metamorphic changes.When basalt is metamorphosed at low pressures and temperatures, some of its constituent minerals convert to the green minerals chlorite, actinolite, and epidote, producing a type of rock called greenstone or greenschist. At higher metamorphic grades, greenstone becomes amphibolite, a dark green to black rock made up of interlocking amphibole crystals.

C2: The Dance of the Continents

  • Reverse and thrust faults are different. They are created by the same array of forces, but reverse faults are steeper (closer to vertical) than thrust faults. …The text doesn’t say where the line is between them…
  • Fault breccia. Rock formed of a jumbled mix of sharp rock fragments embedded in lithified rock flour.
  • Nice review of minerals: pages 19-21.
  • The Greenville orogen underlies Quebec, the midwest US, and stretches into mexico.

All modern oceans contain areas where the lithosphere is thicker than regular oceanic litho-sphere. These areas include island arcs, oceanic plateaus perhaps bearing atolls, and isolated fragments of continental lithosphere such as present-day Madagascar. If subduction continues and these within-ocean features are swept toward the continent, they will ultimately collide with it. Because high-standing islands or plateaus are more buoyant than regular oceanic lithosphere, they will be scraped off the sub-ducting plate and will stick, or accrete, to the overriding plate rather than be subducted. Many mountain belts contain remnants of such former within-ocean features; such remnants are called terranes (a term not to be confused with terrain, which denotes topography). Terranes thus have a variety of origins: they may be continental fragments (microcontinents); former island arcs; or former pieces of thickened oceanic lithosphere such as Hawaii may become if it is accreted to a continent. Many terranes are a mixture of these elements. The convergence and collision of terranes with continental margins commonly leads to the rise of mountains.

Remnants of former deep oceanic lithosphere can be preserved within an ancient mountain system. Such remnants are known as ophiolite suites or ophiolites…

  • Rift Shoulder Highlands are mountains produced as a side effect of continental rifting — when the floor of the rift is bulging upwards.
  • Basins. Fore arc basins are in front of island arcs; back arc basins are behind them. Fore land basins can form on continents, due to the weight of accretionary material pushing down that part of the continental plate. …Is the Owens Valley in California such a basin?
  • The next supercontinent has already been named: Amasia.

…reading break…

C3: It’s About Time

This chapter was mostly review, but a few things stood out — either as needed reminders or new concepts/approaches.

  • Fission Track dating is possible with a mineral called Apatite. It contains small amounts of Uranium that disrupt the crystal structure, and whose decay produces scars. The scars ‘heal’ if it is heated much above 100° C, which can help determine, for example, when rock has been exhumed to surface levels and temperatures.
  • Thermoclock dating occurs in minerals which have small amounts of Uranium or Thorium. These isotopes decay, releasing Helium, and when the rocks has cooled below a certain temperature (dependent on the particular rock) the He can no longer escape, and thus the trapped He can be measured and the rock’s age determined.
  • Cosmogenic dating is possible when cosmic rays strike a rock on the surface and can alter the isotopes in it — for example, Beryllium. This technique can determine how long a particular rock surface (e.g. a glacial erratic) has been facing up.

C4: Fossils and the Brush of Life

Joseph Tyrell’s fishing trip to the Gunflint region — he sampled and later studied a black chert that had xxx Ga microfossils in it.

  • Types of fossilization: Permineralization is when pore spaces are permeated by mineral-bearing fluids which leave mineralization in the pore spaces; Replacement is when the material of the bone or shell is replaced by another mineral; Petrification is when both permineralization and replacement occur. In addition, molds or casts preserve the outlines of an organism, and trace fossils preserve a mold or cast of impressions made by organisms’ burrows, tracks, trails or footprints.

…reading break…

Part II: The Evolution of Canada

C5: From Stardust to Continents: Before 2.5 Ga

  • 4.567 Ga– – Solar System forms… quite precise for something that would seem to have fuzzy boundaries — did it really coalesce in a million years? …Or maybe that’s the oldest meteorites, and it was when the matter solidified enough to be datable…
  • 4.55 Ga — Age of most meteorites , which indicates that solar system did condense quite quickly, but not in a single million years!
  • 4.52 Ga — earth and a Mars-size body collided, giving the earth a ring that condensed into the moon; this also gave earth its 17° axial tilt
  • Initially the moon was less than a quarter of its current distance from the earth; and the earth was spinning faster, with 6 hour days. (And the sun was hotter as well.) The moon’s outer skin has largely been frozen since its early days.
    The Moon’s outer layers solidified from a global magma ocean roughly within the first 100–200 million years after its formation around 4.5 billion years ago, forming a stable, mostly anorthositic crust by about 4.4–4.3 billion years ago. The lunar mare basalts, which fill the large impact basins on the Moon’s surface, were emplaced significantly later, primarily between about 3.9 and 3.0 billion years ago, with some volcanic activity possibly continuing until as recently as 1.2 billion years ago.” [GPT]
  • 4.4 Ga — Earth had abundant water. Water carried into magma ocean below by sinking slabs led to a more silicic magma (with less magnesium and iron), and, being less dense, it tended to rise into the crust and form granitic plutons. Over time some would have risen to the surface, forming rafts of felsic rock that eventually got amalgamated into the first cratons.
  • 4.3-2.5 Ga — Craton formation
  • 3.5 Ga +/- 0.3 Ga — First evidence of life. (1) stromatolites; (2) mudstones with altered C12/C13 ratios indicating biological activity; (3) possible fossils of protists; (4) beginning of banded iron formations…
  • >2,6 Ga — komatiitie lavas
  • Basalt metamorphoses into greenstone (chlorite, actinolite) and that into hornblende.
  •  2-7 – 2.6 GaSuperior Craton forms — proto-continents welded together with oceanic lithosphere trapped between them.
    About 2,750 million years ago, the parts of the Craton underlain by granitic rocks (let’s informally call them protocontinents for simplic-ity) were separated by oceans, the width of which we can only guess. Around 2,720 million years ago, two protocontinents in the north (in terms of modern directions) collided, trapping a mixture of oceanic material between them. Around the same  time, other small protocontinents in the south amalgamated and were welded onto the northern block, sweeping up more tracts of oceanic lithosphere in the process. This amalgamation process, during which the oceanic material became compressed into the greenstone belts, continued until about 2,680 million years ago, by which time all the pieces of the Superior puzzle had come together.
  • 3.8 – 2.5 Ga — BIF (Banded Iron Formations). Differing theories for BIFs. One is that cyanobacteria produced O2 which led to oxidation of iron in ocean; (2) another is that early single-celled organisms used iron “to provide electrons for photosynthesis” producing oxidized iron.

…reading break…

C6: Laying the Foundations: 2.5 Ga to 750 Ma

  • Stanley Tyler discovers outcrop of Gunflint chert that is black and waxy-looking: This 1.9 Ga chert contains micro-fossils: thread-like filaments and hollow spheres on the order of a few microns across.
  • 2.5 – ~2 Ga — Breakup of Archean protocontinents (Slave and Superior cratons are remnants of these. This was accompanied by the formation of gigantic swarms of radiating dikes, possibly due to mantle plumes (e.g. Matechewan dike swarm in southern part of the Superior craton.
  • 2.5 – 2.4 Ga — The Great Oxidation event forms (among other things) beds of red sandstone. Note that the oxygen content of the atmosphere was still far less than it is today — a few percent (vs. 21%)
  • 2.45 – 2.2 Ga — Huronian tils provide evidence of first glaciation (in three waves)
  • 1.8 Ga – Nuna, first supercontinent forms.
  • 1.85-1.2 Ga — island arcs accrete on the southeast edge of Nuna. Also, in the interior, mountain ranges are weathering and sediment is being deposited in interior basins (e,g,, the Thelon and Athasbascan basins).
  • 1.09 – 1.0 Ga — Greenville orogeny (which involved collision of Amazonia (part of South America) with Laurentia) focused along what is now the southeastern flank of the Canadian shield. This was part of the assembly of Rodinia, and also possibly the genesis and termination of the mid-continent rift.
  • 1.0 – 0.750 Ga – Rodinia.
  • Passive margin sequences, from bottom to top (e.g. Huronian sequence in southern Quebec and Ontario exposed along trans-canada highway between Sudbury and Saute Ste. Marie):
    • rift-related coarse-grained sedimentary rocks possibly interlayered with or intruded by mafic volcanics. This stage of rift-filling often includes deposits of dense placer materials (e.g. uranite and pyrite) deposited where flowing streams slow down.
    • as the rift widens and sea floor spreading begins to form an ocean, there are finer grained and better sorted sandstones and mudstones.
    • as the ocean matures there are carbonate and chert layers (with stromatolites) from the shallow ocean floors

…reading break…

C7: Southern Sojourn: Canada 750 to 444 Ma

  • Discovery of Precambrian multi-cellular fossils in Newfoundland: aspidella and charniodiscus.
  • Cryogenian (850-630)=>Edicarian (630-542) =>Cambrian 542-488) =>Ordovician (488-444)

The Cryogenian

  • Rodinia => 780-750 Ma breakup…
  • Laurentia a separate continent by … experts disagree: 750-520 Ma. Anyway, over time, Laurentia, what was to become North America, was rotated 90° so that what is the east coast was oriented towards the paleosouth.
  • Windemere seaway rocks. A stack of sedimentary rocks that accumulate in a trough from California to Alaska — it is now found along the easter Cordillera. The stack includes deep water clastics, carbonates, and tillites with dripstones that were deposited in a rift basin (that perhaps evolved into a passive margin) — it can be seen in road cuts between Jasper, Alberta and Tete Jaune Cache BC, and also near Lake Louise.
  • Snowball earth? Tillites and dropstones occur at 740-670 Ma and 635-600 Ma. Paleomagentic data indicates that some of these sediments formed within 10° of latitude of the paleoequator. This is evidence for global glaciation, though many geologists are skeptical and favor a scenario where there re tracts of open ocean in which organisms would have been able to survive.
    • (If the earth was entirely glaciated, CO2 from volcanism would build up (because it would not be absorbed by the ocean or by surface weathering) and eventually a greenhouse effect would kick in).

The Edicarian

  • Metasoans appear ~ 580 Ma. Life prior to 580Ma (late Edicarian) was dominated by single-celled organisms; metazoans (multicellular animals with soft tissues in the form of disc-shaped, segmented or frond-like organisms) appeared as evinced by centimeter to meter scale fossils preserved in layers of sandstone or volcanic ash.

“While glaciers coated the world, the only organisms that fed on light beams were cyanobacteria. They thrived better than others in the oxygen-poor ocean, a relative nutrient desert. Only the freezing outflows of meltwater rivers carried enough oxygen into the seas for aerobic life to survive. As the snowball began to thaw, the melting ice wore away the continental surface, and drove millions of tons of phosphate into the ocean, creating a chance for an algal takeover. Suddenly, the advantage that cyanobacteria held – being able to absorb nutrients quickly because of their small size – was no longer relevant. Larger organisms were no longer outcompeted. and cyanobacteria were numerous enough to be preyed upon by larger microbes. Being big is an advantage for a predator, even one [that preys] on the microscopic cell, and it is at this time that multicellular algae became common .

– Thomas Halliday, 2022, (Otherlands, 273)

and also

“ In places the ground is coated with a firm, wrinkled layer, hardly distinguishable from the rest of the seabed except in texture, the folds of a rough rhinoceros-hide texture contrasting with the fresh-poured caster-sugar smoothness of ground quartz sand. The rough texture is the microbial mat, coating the interface between earth and water, an ecological structure that has already existed for billions of years. The two simplest domains of life, bacteria and archaea, have fed and reproduced at Ediacara for thousands of years, building layer upon layer as they stabilize the seabed, forming a coherent uppermost layer, like a skin on cold custard. Where the microbes are cyanobacteria, the mats often form distinct clumps called stromatolites that resemble slimy, slowly growing boulders, climbing their way to the light. Elsewhere, as in this delta, the mats are spread flat, a sheet of wrinkled life on the floor of the ocean. Only the top few layers are ever alive at any one time, but the combined generations of millions of microscopic cells nonetheless mean that the mats can reach thicknesses measured in inches. 

From these patches of microbial mat, strange, feathery shapes rise up to 30 centimetres into the water. Ridged, rugby-ball-shaped creatures, only a centimetre in diameter, drift between them. Above these hovers an eerie cone, a centimeter-scale flying saucer,   spinning as it drifts, before settling once again on the seabed. Close-up, it becomes apparent that this shadowy form is made of eight ridges, spiralling clockwise from the tip of the cone to its base, a coiling helter-skelter; floating hypnotically. Unable to move with great speed in the water, and hardly a natural swimmer, it nonetheless occasionally leaves behind its home on the microbial mat. It is found in the peace and quiet of the calm water below the storm base,and, when swimming, hangs in the water over stranger creatures still. Already, multicellular life is complex, and this is in fact one of the earliest creatures we can with certainty call an animal. Eoandromeda – so called because when flattened in fossilization, its eight arms resemble the spiral galaxy Andromeda – is a lantern in the Ediacaran murk, one of the few forms of life here that is remotely recognizable.”

– Thomas Halliday, 2022, (Otherlands, 275-6)

The Cambrian

  • The Cambrian Explosion, 542 Ma. Most sessile organisms became extinct by the end of the Edicarian, possibly due to the evolution of mobile organisms with a head end that allowed them to move forward. The first organisms with skeletons appeared around 550 Ma. The beginning of the Cambrian is marked by the appearance of trace fossils of worm burrows, and that was followed by the first “shelly” fossils. After that came brachiopods and archaeocyanthans, and then trilobites.
  • Oxygen explosion? One possible driver for the Cambrian explosion is that Oxygen increased to 3-10% (15-50% of present-day values). This is consistent with what analysis of contemporaneous sedimentary rocks show. Of course, it is also possible that the evolution of new morphological features — heads, eyes, mouths, teeth, segments, legs and antennae had something to do with it. …These features could have led to an evolutionary arms race as predators and prey engaged in a red queen’s race.
  • Protichnites. In 1983 trace fossils of an arthropod walking on land were discovered in a quarry nears Kingston, Ontario, in 500 Ma sandstone formed from aeolian dunes. This is tens of millions of years before any other animals are known to have walked on land, so perhaps this was just a temporary outing!
  • paleo-South: Rifting / opening of Iapetus (circa 600 Ma), and microcontinent suturing. Around 600 Ma crustal rifting began to separate Laurentia from Amazonia, forming rifts that can still be seen in the valleys of the St Lawrence and Ottowa rivers. As time went on (moving into the Ordovician) microcontinents — Gander, Avalonia and Magma accreted to the paleo-southern shore of Laurentia (now east coast of North America).
  • paleo-East (north): Spreading opens Ural Ocean (circa 600 Ma). From 600-480 Ma this was a passive margin that accumulated carbonates which are still preserved as flat strata overlying artic islands. This margin area may have been quite shallow, as there are extensive deposits of evaporites. Between 480-450 Ma a subduction zone and magmatic arc developed in the Ural ocean, leading to the creation and eventual accretion of amicrocontinent called Pearya to the paleo-east side of Laurentia later on…
  • paleowestern (southern) margin. The core of Laurentia has been stable since the Grenville Orogeny — it is called the North American Continental Platform.

Ordovician

  • Brachiopods proliferated and nauteloids rose to prominence. Trilobites continued to thrive, as did echinoderms, especially crinoids.

…reading break…

Box 6: The Burgess Shale

  • The Burgess Shale (named for a nearby mountain and pass) is near the town of Field in the Southern Canadian Rockies and is renowned for its preservation of a menagerie of 505 Ma fossils of soft-bodies animals. it is now a UNESCO World Heritage Site.
  • Fossils in an area called “the trilobite beds” were discovered near Mt Stephen during the construction of the railroad, and Canadian paleontologists identified and characterized a number of the fossils. But it was not until Charles Walcott, an American paleontologist and secretary of the Smithsonian Institution, did further exploration in the area, that the Burgess Shale itself was discovered. Between 1910 and 1924 Walcott and his family collected around 65,000 specimens (!!!!!) from the shale.
  • The Royal Ontario Museum’s Burgess Shale collection contains more than 150,000 fossils.
  • The Burgess Shale has yielded fossils, often exquisitely preserved, even to the extent of preserving gut contents, of more than 200 organisms, most of which lack shells. The fossils yield great insight about the morphology of Cambrian organisms: some appear familiar to us, others demonstrate mixtures of body parts that strike us as odd and outlandish. For example, Opabina has five eyes, an extended proboscis, a segmented body, and no legs.
  • The Shale also offers interesting case study in how fossils have been reinterpreted over time. For example, Anomalocarius Canadences (“Canada’s odd shrimp”) turns out to have been the claw of a larger organism (but which still retains the original name). Similarly, many of the fossils which were once considered to be representatives of extinct phyla are now thought to be early branches of existing phyla.
  • Stephen Jay Gould’s book, Wonderful Life, is about the Burgess Shale.
  • The Shale appears to be the result of periodic mud slides in the ocean that buried and instantly killed (because no evidence of escape attempts) the organisms, and preserved them in an anoxic environment.

Box 7: The Green Revolution

  • Chloroplasts were originally prokaryotic cyanobacteria that were engulfed and incorporated into early plant cells. Note that some cyanobacteria still survive independently.
  • Several lineages of algae developed multi-cellular forms independently. They also trapped or incorporated different pigments — red and brown chlorophylls are predominantly found in sea weeds; green is as well, though it is also what gave rise to land plants.
  • Freshwater forms of green algae invaded land on many occasions, but only one — embryophytes, was really successful on land. The key was adaptations that allowed plants to live in open air, and deal with dessication. In water, plants can easily obtain food and water by absorption directly into their cells, expelling wastes which diffuse away, and enjoy protection from UV light and neutral buoyancy for support. None of these advantages obtain on land.
  • Embryophytes include plants from the simple lungwort to the deciduous trees.
  • The first land plants were likely bryophytes such as mosses — they don’t have a vascular system or roots, and thus require moist environments, but they do use spores as a reproductive mechanism. These appeared in the Ordovician, about 470 Ma.
  • In the Silurian, at about 425 Ma, tracheophytes — plants with a superior vascular system — appeared. This includes most of the plants we’re familiar with, from ferns to trees. The vascular system both provided means for transporting water and nutrients within the plant, and also mechanical support so that they could compete for light and withstand environmental forces.
  • Leaves, wood and seeds appeared in the Devonian (xxx Ma)
  • Leaves may have been a response to declining CO2 levels during the Devonian and enabled the plant to take in sufficient CO2.
  • Wood enabled plants to grow taller, and by the late Devonian forest canopies had replaced knee-high thickets.
  • Seeds, by providing a store of water and nutrients, enabled plants to reproduce in drier environments (e.g. where there were seasonal rains and dry periods.)
  • Around the Carboniferous-Permian boundary (300 Ma), the global environment became much drier, and conifers and cycads became the predominant phyla.
  • Later (140 Ma) flowering plants came on the scene, and are now one of the most successful types.
  • Grass, a type of flowering plant but different in that it is predominantly wind-pollinated, appeared only 25 Ma during the Oligocene. It was adapted to the dry environments of continental interiors, possibly because of a different photosynthesis pathway. [check]

C8: Crossing the Equator

  • This chapter:
    Silurian(444-416)=>Devonian(416-359)=>Carboniferous(359-299)=>Permian(299-251)
    • Laurentia fused with Gandara and Baltica to form Euramerica, which then began to rotate [???] counterclockwise until its present eastern margin faced paleosoutheast. The most important point is that what was to become north america was actively rotating and drifting north. By 315 Ma the paleoequaor was crossing through the SW US and eastern Canada.
  • 310 Ma: Euroamerica and Protogondwana had come together, forming Pangea, though Siberia was a bit late to the game.
  • Collisions
    • 1. 480 Ma: Dashwood microcontinent accretes to south short of Laurentia in the Taconic orogeny, the first in the series of orogenies that produced the Appalacheans.
    • 2. 440-422 Ma: Gandaria collides with southern Laurentia in the Salinic orogeny. Then in 420-390 Ma Avalonia collides with the Gandarian margin of Laurentia in the Arcadian orogeny.
    • 3. 390 Ma. Meguma is pulled sideways against Avalonian margin in the neoarcadian orogency
  • xxxx

…reading break…

Views: 11

Through the Language Glass

by Guy Deutscher

October 2024

This is an excellent book; interesting well-documented science, and some beautiful and erudite writing as well. The basic argument — that grammar determines what must be specified, rather than what can be specified, and in that manner instills certain habits of mind that effect how people see the world — seems correct, if not quite living up to the subtitle of the book: Why the World Looks Different in Other Languages.

Perhaps the most interesting and fun part of the book was to be introduced to languages that work very differently from English: The Mates language (in Peru) that requires speakers to specify whether the fact they report is based on personal observation, indirect evidence, or hearsay; and the Australian language that has no egocentric prepositions, but requires all positional information to be reported in terms of the cardinal directions, thus requiring their speakers to always be oriented.

This book was a pleasure to read. I plan to seek out other work by this writer. 

Contents

Front Matter

On whether languages reflect the characteristics of their speakers, he writes:

Many a dinner table conversation is embellished by such vignettes, for few subjects lend themselves more readily to disquisition than the character of different languages and their speakers. And yet should these lofty observations be carried away from the conviviality of the dining room to the chill of the study, they would quickly collapse like a soufflé of airy anecdote-at best amusing and meaningless, at worst bigoted and absurd.

— p. 2

The basic argument of the book is this:

The effects that have emerged from recent research, however, are far more down to earth. They are to do with the habits of mind that language can instill on the ground level of thought: on memory, attention, perception, and associations. And while these effects may be less wild than those flaunted in the past, we shall see that some of them are no less striking for all that.

I think it is correct, but that the subtitle of the book – Why the World Looks Different in Other Languages – is a bit of an exaggeration.

C1-5: <Reprise of history and status of color terms>

C1: Naming the Rainbow

This chapter reprises now-unknown work by William Gladstone (now remembered as an English prime minister) on Homer and his writings, and focuses in on particular on one chapter in Gladstone’s monumental 3,000 page work: a chapter on Homer’s use of color terms.

Gladstone’s scrutiny of the Iliad and the Odyssey revealed that there is something awry about Homer’s descriptions of color, and the conclusions Gladstone draws from his discovery are so radical and so bewildering that his contemporaries are entirely unable to digest them and largely dismiss them out of hand. But before long, Gladstone’s conundrum will launch a thousand ships of learning, have a profound effect on the development of at least three academic disciplines, and trigger a war over the control of language between nature and culture that after 150 years shows no sign of abating.

Gladstone notes that Homer uses color terms in odd ways — the famous “wine dark sea” (really “wine-looking” sea) being just one example.

Mostly Homer, as well as other Greek authors of the period, use color very little in their descriptions: mostly they use black or white; terms for colors are used infrequently and inconsistently. For example, the only other use of “wine-looking” is to describe the color of oxen.

Gladstone’s fourth point is the vast predominance of the “most crude and elemental forms of color”-black and white-over every other. He counts that Homer uses the adjective melas (black) about 170 times in the poems, and this does not even include instances of the corresponding verb “to grow black,” as when the sea is described as “black-ening beneath the ripple of the West Wind that is newly risen.” Words meaning “white” appear around 100 times. In contrast to this abun-dance, the word eruthros (red) appears thirteen times, xanthos (yellow) is hardly found ten times, ioeis (violet) six times, and other colors even less often.

C6: Crying Whorf

This chapter describes the origin, rise and fall of linguistic relativity. Sapir is depicted as respectable but making over-stated claims; Whorf comes across as a charlatan, for example, making claims to have deeply studied Hopi, when he only had access to a single informant in New York – and making broad claims that are entirely wrong (e.g. that the Hopi language does not have a future tense). 

Deutscher traces the origin of linguistic relativity to Wilhelm von Humboldt in 1799,  whose “linguistic road to Damascus led through the Pyrennes.” Deutscher encountered the Basque language, and found that it was radically different from the languages linguists tended to study. He then sought out other ‘more exotic’ languages, which he found by going to the Vatican library and studying the notes of Jesuit missionaries to South and Central America: “…Humboldt was barely scratching the surface. But the dim ray of light that shown from his materials felt dazzling nonetheless because of the utter darkness in which he and his contemporaries had languished.” p. 135 Although Humboldt’s ideas led to linguistic relativity, it should be noted that he had a much more nuanced and correct view: In principle, any language may express any idea; the real differences among languages are not what they are able to express but in “what it encourages and stimulates its speakers to do from its own inner force.” But this view was not carried forward, and instead: “The Humboldtian ideas now underwent a process of rapid fermentation, and as the spirit of the new theory grew more powerful, the rhetoric became less sober. ”

All that said, Deutscher argues it is a mistake to dismiss the idea that language has no influence over thought. But rather than taking the strong case the language constrains thought, he instead argues the habits of language may lead to habits of mind. In the case of the influence of language, and refers to the idea that Boas introduces and that Jakobson crystalized into a maxim: “Languages differ in what they must convey, and not in what they may convey.”

Phrases I like

“…has still the power to disturb our hearts.” [Sapir, referring to Homer, Ovid, etc.] p. 129

“[His] linguistic road to Damascus led through the Pyrennes.” p. 134

“…Humboldt was barely scratching the surface. But the dim ray of light that shown from his materials felt dazzling nonetheless because of the utter darkness in which he and his contemporaries had languished.” p. 135

Views: 3

A Room of One’s Own, Virginia Woolf

Reading on my own, circa Fall 2024.

This book or extended essay is based on a lecture on Women and Literature that Woolf gave, or at least that is the framing of it in the book. She approaches the topic by explaining how she came to develop her thoughts about it:

“At any rate, when a subject is highly controversial–and any question about sex is that–one cannot hope to tell the truth. One can only show how one came to hold whatever opinion one does hold. One can only give one’s audience the chance of drawing their own conclusions as they observe the limitations, the prejudices, the idiosyncrasies of the speaker. Fiction here is likely to contain more truth than fact.”

She begins with an account of going to Oxbridge, and walking about the colleges. She notes that, being a woman, she is barred from walking on the grass, and is not welcome in the library. She has lovely descriptions of the landscape and colleges:

To the right and left, bushes of some sort, golden and crimson, glowed with the colour, even it seemed burnt with the heat, of fire. On the further bank the willows wept in perpetual lamentation, their hair about their shoulders. The river reflected whatever it chose of sky and bridge and burning tree, and when the undergraduate had oared his boat through the reflections they closed again, completely, as if he had never been.

And as we accompany her, she recounts her thought process. I love her metaphor (more extensive than the excerpt I quote) of thinking as fishing…

Thought — to call it by a prouder name than it deserved — had let its line down into the stream. It swayed, minute after minute, hither and thither among the reflections and the weeds, letting the water lift it and sink it, until–you know the little tug–the sudden conglomeration of an idea at the end of one’s line: and then the cautious hauling of it in, and the careful laying of it out?


Pausing in my account here, but passages that I like for various reasons follow:

“Lamb is one of the most congenial; one to whom one would have liked to say, ‘Tell me then how you wrote your essays?’ For his essays are superior even to Max Beerbohm’s, I thought, with all their perfection, because of that wild flash of imagination, that lightning crack of genius in the middle of them which leaves them flawed and imperfect, but starred with poetry.


“Many were in cap and gown; some had tufts of fur on their shoulders; others were wheeled in bath-chairs; others, old though not past middle age, seemed creased and crushed into shapes so singular that one was reminded of those giant crabs and crayfish who heave with difficulty across the sand of an aquarium. 


Fiction must stick to facts, and the truer the facts, the better the fiction — so we are told. “


“It was the time between the lights when colours undergo their intensification and purples and golds burn in window-panes like the beat of an excitable heart; when for some reason the beauty of the world revealed and yet soon to perish (here I pushed into the garden, for, unwisely, the door was left open and no beadles seemed about), the beauty of the world which is so soon to perish, has two edges, one of laughter, one of anguish, cutting the heart asunder. The gardens of Fernham lay before me.”


“I thought at last that it was time to roll up the crumpled skin of the day, with its arguments and its impressions and its anger and its laughter, and cast it into the hedge. A thousand stars were flashing across the blue wastes of the sky. One seemed alone with an inscrutable society.”


xxx



Views: 52

EP#15: The Making of the American Essay*

*EP#15: The Making of the American Essay, John D. Agata (Graywolf Press, 2016)


Favorites are indicated by ** – there is only one: Blood Burning Moon.
* indicates those that I found something notable in, though I was not keen on them
(*) indicates something previouly read that I still like.
Frankly, I did not care for most of the essays (or, really, most were not essays, but presumably informed or influenced American essayists) in this volume.


This is the 15th volume CT and I have taken up in our essay reading project. Here we return to the type of book we began with — the broadly historical anthology. This differs from previous anthologies we’ve read in that it appears that the editor introduces each piece, something we’ve wished for in the past, especially when we’ve been mystified by why an essay was selected.

Later: Now that we’re farther into it, I’m a little less keen on it. A lot of the material in here are not actually essays: there are short stories, one sermon, a book chapter or two, and some very long pieces (Mark Twain’s A Letter from Earth), none of which strike me as essays. I had hoped for essays, or at least short essay-like pieces… and there are some, but quite a lot is other material. Although his initial introductions were pretty good at situating selections, as the book moves on the introductions are less about the selections, per se, and instead his sort of personal arc through American History. He is also quite fond of experimental work — work that, while it might have raised questions at the time, or contributed to discourse among the literati, is difficult to imagine anyone reading for pleasure or even enlightenment.

Continue reading EP#15: The Making of the American Essay*

Views: 25

LS: Land Above the Trees: A Guide to American Alpine Tundra, Ann Zwinger & Beatrice E. Willard

February 2024…

This book was recommended in Kim Stanley Robinson’s The High Sierra: A Love Story, as a good guide to the ecology and botany of the Sierra Nevada (and the upper portions of other North American ranges). And, indeed, it is beautifully written with a narrative style in which the reader moves through landscapes with the authors, looking at this and that, in contrast to what I had expected would be more of a catalog or encyclopedic approach. The book is divided into two principle parts: part 1 examines elements of ‘above the trees’ ecosystems, like fellfields or krumholtz; part 2 looks at particular North American tundra ecosystems, with one chapter being on the Sierra Nevada.

Continue reading LS: Land Above the Trees: A Guide to American Alpine Tundra, Ann Zwinger & Beatrice E. Willard

Views: 13

LS*–The High Sierra: A Love Story, Kim Stanley Robinson

November 2023

The High Sierra: A Love Story, by Kim Stanely Robinson. 2022.

* I was reading this for other reasons, but nevertheless it fits well into my project to read essays that focus on landscape and natural history.

TL;DR: I love this book. But it is not for everyone. On the other hand, it is organized in such a way that readers interested in particular topics — geology, history, etc. – could skip through the book attending to one or a few themes that interest them. It has great pictures, too.

#

I’m a big fan of KSR, and think it likely that I’ve read everything he’s written, although it is possible that that omits a few early science fiction novels that were retroactively published after he became better known. I like the complex characters he develops, the intensely developed worlds he portrays, and especially his attention to geology, climate, economics, politics, and the role of large institutions – themes that are uncommon in much science fiction. Also unusual is that he sometimes ventures beyond the borders of SF, as with his novel Years of Rice and Salt, and especially with this book, which is multi-threaded work the interweaves memoir, geology, natural history and history.

Continue reading LS*–The High Sierra: A Love Story, Kim Stanley Robinson

Views: 23

What is this Rock, 3: Course Notes

What is this Rock, 3

I just returned from a weekend up on the North Shore. K and I went up and stayed at Cove Point Lodge, while I took a 3-day course on North Shore Geology, focusing on the Beaver Bay area. The course was taught by Jim Miller, a retired Minnesota Geological Survey person, and an emeritus professor from UMD: he was a great person to teach the course, both because he was a good and enthusiastic instructor, and because he has spent his career focused on the northern Minnesota in general, and the North Shore in particular. Many of the geological maps of the north shore include his name as cartographer.

This is a laundry list of what I learned — however, there are problems with the images which I have yet to fix.

Continue reading What is this Rock, 3: Course Notes

Views: 14

Iceland 2020, Day 1: Reykjanes Plans

Tuesday, 26 July 2022

While I had intended to report on the trip in this blog, it turned out, since I was writing on my phone, to be easier to do a series of daily posts to Facebook. So this is the last bit on Iceland here, at least for the moment. I plan to edit and expand the FB posts, and will eventually post them here, or in a another of my blogs.

#

Geology of the Peninsula*

*Much of this is adapted from https://en.wikipedia.org/wiki/Geology_of_Reykjanes_Peninsula

The Reykjanes Peninsula is the continuation of the submarine Reykjanes Ridge, a segement of the Mid-Atlantic ridge. It reaches from the Esja volcano in the north to hengill in the east and Reykhanesta in the west. It originated 6-7 Ma in a rift-jump, after the Snæfellsnes-Skagi rift had drifted to the west out of range of the presumed location of the mantle plume.

Continue reading Iceland 2020, Day 1: Reykjanes Plans

Views: 14

Iceland 2022, Day 0: Recovery Day in Reykjavik

Monday, 25 July 2022

A good night’s sleep

https://norse-mythology.org/symbols/svefnthorn/Norse Sleep Rune

As I’ve aged I find that I fare less well on less sleep; or perhaps, I never fared well on less sleep, but when young was too inexperienced to notice my own deficits. Regardless, I scheduled my trip to have a ‘recovery day,’ so that I wouldn’t be dragging on the first day of the tour. Additional benefits are decreased stress — I was unconcerned the cascading delays of the day before would cause any disruption in my schedule – and a chance to wander about Reykjavik.

Continue reading Iceland 2022, Day 0: Recovery Day in Reykjavik

Views: 11

Iceland 2022, Travel Day: The Yellow Duffle

Saturday-Sunday, 23-24 July 2022

I have been looking forward to the Iceland trip for quite a long time. It had initially been scheduled for the Summer of 2021, but Covid concerns derailed that. The trip is under the auspices of ILSG –The Institute of Lake Superior Geology – which is a regional association of geologists, both professional and academic. I became acquainted with the group via the Geological Society of Minnesota, and went on an ILSG field trip to the big island of Hawai’i in the winter of 2020, just prior to the advent of Covid. It was a great trip, 11 days with about a dozen folks, and toured the five extant volcanoes of the island, including a helicopter trip to the suburb once known as”Royal Gardens,” now better known as a lava field of black basalt. It was a great trip, and although I am introverted, I very much enjoyed the trip and the people. That the people who led the Hawaii trip were also leading the longer and rougher Iceland trip, was a significant inducement.

Continue reading Iceland 2022, Travel Day: The Yellow Duffle

Views: 14